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DECRYPTION SYSTEMS AND RELATED
METHODS FOR ON-THE-FLY DECRYPTION
WITHIN INTEGRATED CIRCUITS

RELATED APPLICATIONS

This application is related in subject matter to the following
concurrently filed application: U.S. patent application Ser.
No. 14/570,611, entitled “KEY MANAGEMENT FOR ON-
THE-FLY HARDWARE DECRYPTION WITHIN INTE-
GRATED CIRCUITS,” which is each hereby incorporated by
reference in its entirety.

TECHNICAL FIELD

This technical field relates to decryption of encrypted soft-
ware images and, more particularly, to low latency decryption
within an integrated circuit.

BACKGROUND

It is often desirable to protect application software code
that is loaded from external memory and executed by proces-
sors embedded within integrated circuits. As such, certain
embedded processor systems use a decryption engine and a
secret key to decrypt software images that are encrypted and
stored in external memory systems. For these security appli-
cations, a cryptographic algorithm according to the Advanced
Encryption Standard (AES) is often used to encrypt the soft-
ware image, and an AES decryption engine is then often used
within the integrated circuit to decrypt the encrypted software
image. AES encryption/decryption is well known and is com-
monly applied to provide secured protection of code and data
in various environments. AES algorithms operate on 128-bit
(16 byte) data blocks with either 128-bit, 192-bit, or 256-bit
secret keys. Further, AES algorithms also use variable num-
bers of cryptographic calculation rounds depending upon the
size of the secret key being used. For example, where a
128-bit secretkey is used for AES encryption, datais typically
processed through a series of calculations requiring ten (10)
rounds to complete. Each round can perform different data
transformations including: (1) byte substitution using a sub-
stitution table, (2) shifting rows of a state array by different
offsets, (3) mixing data within columns of a state array, and/or
(4) adding a round key to the state. The AES decryption
function uses the same 128-bit secret key to reverse the
encryption provided by the AES encryption function.

For secure applications with certain external memories,
such as Quad-SPI (quad-serial-peripheral-interface) flash
(non-volatile) memories, execute-in-place operational modes
can cause difficulties with existing integrated circuit process-
ing systems. For example, a decryption engine for such an
execute-in-place operational mode may require that
encrypted code be decrypted in real-time thereby allowing
direct execution of code being accessed from the external
memory system. However, a significant challenge for such
real-time execution is the speed at which decryption is per-
formed within the integrated circuit. An internal crypto-
graphic system that increases latency to perform decryption
will adversely affect system performance. As such, the
decryption processing selected for such a decryption system
can have a negative impact on overall latency for the system
and thereby degrade system performance.

DESCRIPTION OF THE DRAWINGS

It is noted that the appended figures illustrate only example
embodiments and are, therefore, not to be considered as lim-
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2

iting the scope of the present invention. Elements in the
figures are illustrated for simplicity and clarity and have not
necessarily been drawn to scale.

FIG. 1is ablock diagram of an example embodiment for a
processing system integrated circuit that decrypts encrypted
code for an encrypted software image stored within an exter-
nal memory using a counter-mode decryption system while
avoiding additional system latency.

FIG. 2A is a block diagram of an example embodiment for
encryption processing of data blocks associated with a soft-
ware image using a secret key and unique counter values to
generate an encrypted software image that is stored within an
external memory.

FIG. 2B is a block diagram of an example embodiment for
decryption processing of encrypted data blocks associated
with an encrypted software image using a secret key and
unique counter values to generate a decrypted software
image.

FIG. 3 is a diagram of an example embodiment for
encrypted information that can be stored in an external
memory and that includes one or more encrypted software
images and associated key blobs (Binary Large OBjects).

FIG. 4 is adiagram of an example embodiment for contents
of a key blob including a secret key, an initialization vector
value for generation of unique counter values, and start/end
addresses for an encrypted software image associated with
the key blob.

FIG. 5 is a block diagram of an example embodiment for a
counter-mode decryption system that pre-generates
encrypted counter values to provide zero additional cycles of
system latency.

FIG. 6 is a process flow diagram of an example embodi-
ment for counter-mode decryption of an encrypted software
image within a processing system integrated circuit.

DETAILED DESCRIPTION

Methods and systems are disclosed for decryption within
an integrated circuit to provide an on-the-fly decryption sys-
tem that adds zero additional cycles of latency within the
overall system performance. For the disclosed embodiments,
a decryption system within a processing system integrated
circuit generates an encrypted counter value using an address
while encrypted code associated with an encrypted software
image is being obtained from an external memory using the
address. The decryption system then uses the encrypted
counter value to decrypt the encrypted code and to output
decrypted code that can be further processed within the pro-
cessing system integrated circuit. A secret key and an encryp-
tion engine can be used to generate the encrypted counter
value, and an exclusive-OR logic block can process the
encrypted counter value and the encrypted code to generate
the decrypted code. By pre-generating the encrypted counter
value while the encrypted code is being obtained from the
external memory, the decryption system adds zero additional
cycles of latency to the overall system performance. Other
data independent encryption/decryption techniques can also
be used such as output feedback encryption/decryption
modes. Different features and variations can be implemented,
as desired, and related or modified systems and methods can
be utilized, as well.

The disclosed embodiments allow direct execute-in-place
(XIP) processing of encrypted code images stored in external
memories with zero additional cycles of latency, thereby
enhancing security and offering strong code protection with-
out degrading system level performance. Rather than simply
applying an exclusive-OR (XOR) logic function within the
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encryption/decryption systems along with a secret key, the
disclosed counter-mode decryption embodiments also apply
unique counters associated with system addresses for the
encrypted code being accessed from external memory. As
such, when encrypted data blocks are received from the exter-
nal memory by the processing system integrated circuit, the
decryption system within the integrated circuit uses the secret
key and the unique counter along with an XOR logic block to
decrypt the encrypted data blocks. These counter-mode
decryption techniques applied by the embodiments described
herein improve code and read-only data security while allow-
ing for pre-generation of encrypted counter values within the
processing system integrated circuit. As such, zero additional
cycles of latency is experienced by the overall system, and
degradation of system performance is avoided while still
providing significant protection for the encrypted software
image being accessed by the integrated circuit from external
memory. Other variations can also be implemented as
desired.

FIG. 1 is a block diagram of an example embodiment 100
including an external memory 130 connected to a processing
system integrated circuit 140 that includes a counter-mode
decryption system 102. The external memory 130 stores an
encrypted software image 134, and blocks of encrypted code
132 from the encrypted software image 134 are communi-
cated to and executed by the processing system integrated
circuit 140. The memory controller 120 communicates with
the external memory 130, for example using one or more
addresses as described further below, and receives encrypted
code 132 from the external memory 130. The encrypted code
132 is stored within a memory buffer system 122, which can
include one or more input and/or output data storage buffers.
The decryption system 102 receives and decrypts encrypted
code 110 from the memory buffer system 122 and outputs
decrypted code 112. Decrypted code 112 can be stored back
within memory buffer system 122 and then output as
decrypted code 124 to further processing circuitry within the
processing system integrated circuit 140, for example,
through a system interconnect bus 126. The decrypted code
112 can also be provided directly to the system interconnect
bus 126 without first being stored within the memory buffer
system 122. As described further below, the decryption sys-
tem 102 includes a decryption engine 104 that decrypts the
encrypted code 110 using a secret key 108 and a counter value
106 along with an encryption engine and an XOR logic block.
The use of the counter value 106 in addition to the secret key
108 provides for additional security for the encrypted image
134 and associated encrypted code 132 being communicated
to the processing system integrated circuit 140. Further, as
described herein, encrypted counter values can be generated
while the encrypted code 132/110 is being obtained from the
external memory 130 and provided to the decryption system
102 so that no additional cycles of latency is introduced into
the overall system.

It is noted that the counter-mode decryption engine 104 can
be implemented, for example, using an AES encryption
engine operated in AES counter mode (e.g., CTR-AES128)to
generate encrypted counter values from counter values 106. It
is further noted that the secret key 108 can be a 128-bit code,
although other key lengths such as key lengths above 128 bits
can also be used. It is further noted that the external memory
system 130 can be implemented as a Quad-SPI flash memory,
and the buffer system 122 can be implemented as one or more
Quad-SPI compatible data buffers. Other memory or data
storage mediums could also be used.

FIG.2A is a block diagram of an example embodiment 200
for encryption processing of a software image to generate the
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4

encrypted image 134 that is stored within the external
memory 130. A decrypted or plain text software image is
partitioned into N different data blocks, such as 128-bit data
blocks, that provide the plain text inputs 208A, 208B,
208C . .. 208D in embodiment 200. The encryption process-
ing uses a secret key (K) 108, counter values (CTR0-n)
106 A-D, an encryption (E) engine 204, and XOR logic block
206 to generate encrypted data blocks represented as cipher
text 210A, 210B, 210C . . . 210D in embodiment 200. An
initialization vector (IV) value 202 is used along with address
(ADDRO-n) values 201A, 201B, 201C . . . 201D to generate
unique counter values (CTR0-n) 106 A,106B,106C ... 106D
that are used for each of the N (where N=n+1) encryption
operations. An XOR logic operation is then applied to the
resulting encrypted counter values 205A, 2058, 205C . . .
205D and the plain text inputs 208 A, 208B, 208C . . . 208D in
order to generate encrypted data blocks represented by cipher
text 210A, 210B, 210C . . . 210D. The resulting encrypted
software image 134 is a combination of the cipher text 210A,
210B, 210C. .. 210D data blocks, and the encrypted software
image 134 is output by the N different encryption operations
depicted for embodiment 200.

In particular, for a first encryption operation, the encryp-
tion engine 204 uses the secret key 108 to encrypt a first
counter value (CTRO0) 106A that is based upon a first address
value (ADDRO0) 201 A and the initialization vector value (IV)
202, and the resulting encrypted counter value 205A is pro-
vided to XOR logic block 206 along with a first data block
(PLAIN TEXTO0) 208A to generate a first encrypted data
block (CIPHER TEXTO0) 210A. For a second encryption
operation, the encryption engine 204 uses the secret key 108
to encrypt a second counter value (CTR1) 106B that is based
upon a second address value (ADDR1) 201B and the initial-
ization vector value (IV) 202, and the resulting encrypted
counter value 205B is provided to XOR logic block 206 along
with a second data block (PLAIN TEXT1) 208B to generate
a second encrypted data block (CIPHER TEXT1) 210B. For
a third encryption operation, the encryption engine 204 uses
the secret key 108 to encrypt a third counter value (CTR2)
106C that is based upon a third address value (ADDR2) 201C
and the initialization vector value (IV) 202, and the resulting
encrypted counter value 205C is provided to XOR logic block
206 along with a third data block (PLAIN TEXT?2) 208C to
generate a third encrypted data block (CIPHER TEXT2)
210C. Encryption operations continue with respect to addi-
tional data blocks until an Nth data block is reached. For the
Nth encryption operation, the encryption engine 204 uses the
secret key 108 to encrypt an Nth counter value (CTRn) 106D
that is based upon an Nth address value (ADDRn) 201D and
the initialization vector value (IV) 202, and the resulting
encrypted counter value 205D is provided to XOR logic block
206 along with an Nth data block (PLAIN TEXTn) 208D to
generate a Nth encrypted data block (CIPHER TEXTn)
210D. The N encrypted data blocks (CIPHER TEXT0-n)
210A-D are combined to form the encrypted image 134 that
is stored within the external memory 130.

It is noted that XOR logic block 206 provides a modulo-2
addition function that operates such that if two input bits have
the same logic level (e.g., 00 or 11), a logic “0” is output, and
if two input bits have different logic levels (e.g., 01 or 10), a
logic “1” is output. Further, the initialization value (IV) 202
can be implemented using an 8-byte or 64-bit random value.
The address (ADDRO-n) values 201A-D can be imple-
mented using 32-bit system byte addresses for the software
image. The data blocks, secret keys, and encryption opera-
tions can use 128-bit bit lengths and operations, and the
counter values (CTR0-n) can also be 128-bit values. In one
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example implementation, each of the counter values (CTR0-
n) 106 A-D can be formed as follows: (1) the most significant
64 bits include the initialization vector value (IV) 202, (2) the
next 32 bits include an XOR of the upper 32 bits of the
initialization vector value (IV) 202 with the lower 32 bits of
the initialization vector value (IV) 202, and (3) the least
significant 32 bits include the 32-bit system byte address
provided by address (ADDRO0-n) values 201 A-D. Other tech-
niques could also be used to form the counter values (CTR0-
n). It is also noted that a start address (SRT) and end address
(END) for the address (ADDRO0-n) values 201 A-D, the secret
key (K) 108, and the counter initialization value (IV) 202 can
be stored in a separate secured data block, such as an
encrypted key blob, that is also stored in external memory 130
and communicated to the processing system integrated circuit
140 for decryption and use within the processing system
integrated circuit 140. Additional and/or different techniques
could also be used to provide these data values to the process-
ing system integrated circuit 140. It is also noted that a blob
(Binary Large OBject) is a collection of binary data stored as
a single entity in a data storage system, and a key blob
includes one or more keys that are used to encrypt other
information such as software images. As described below, the
key blobs are themselves encrypted using separate key
encryption keys, and they are then stored as encrypted key
blobs in external memory 130.

FIG. 2B is a block diagram of an example embodiment 250
for the decryption processing by the decryption system 102 to
decrypt encrypted code associated with the encrypted soft-
ware image 134 and to generate a decrypted code associated
with a decrypted software image 260. The decryption pro-
cessing by the decryption system 102 in effect reverses the
encryption used to generate the encrypted software image
134. The N different encrypted data blocks for the encrypted
software image 134 are provided as cipher text inputs 110A,
110B, 110C . . . 110D in embodiment 250. The decryption
processing uses a secret key (K) 108, an encryption (E) engine
254, and an XOR logic block 256 to generate decrypted data
blocks represented as plain text 112A, 112B, 112C . . . 112D
in embodiment 250. The initialization vector value (IV) 202
and the address (ADDRO0-n) values 201 A-D are used to gen-
erate the different counter values 106A, 106B, 106C . . .
106D, which match the ones used for the encryption process-
ing in FIG. 2A. The encryption engine 254 receives the
counter values 106A-D and the secret key 108 and generates
encrypted counter values 255A, 255B, 255C .. . 255D. These
resulting encrypted counter values 255A-D, which match the
encrypted counter values in FIG. 2A, are inputs along with the
cipher text inputs 110A, 110B, 110C . . . 110D to the XOR
logic block 256. The resulting decrypted data blocks from the
XOR logic block 256 are represented by plain text 112A,
112B, 112C . . . 112D, which match the original data blocks
represented by plain text 208A-D in FIG. 2A. The resulting
decrypted software image 260 is a combination of the plain
text data blocks 112A, 112B, 112C . .. 112D.

In particular, for a first decryption operation, the encryp-
tion engine 254 uses the secret key 108 to encrypt a first
counter value (CTRO0) 106A that is based upon the initializa-
tion vector (IV) value 202 and a first address (ADDRO0) 201 A,
and the resulting encrypted counter value 255A is provided to
XOR logic block 256 along with a first encrypted data block
(CIPHER TEXTO0) 110A to generate a first decrypted data
block (PLAINTEXT0)112A. For asecond decryption opera-
tion, the encryption engine 254 uses the same secret key 108
to encrypt a second counter value (CTR1) 106B that is based
upon the initialization vector (IV) value 202 and a second
address (ADDR1) 201B, and the resulting encrypted counter
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value 2558 is provided to XOR logic block 256 along with a
second encrypted data block (CIPHER TEXT1) 110B to gen-
erate a second decrypted data block (PLAIN TEXT1) 112B.
For a third decryption operation, the encryption engine 254
uses the same secret key 108 to encrypt a third counter value
(CTR2) 106C that is based upon the initialization vector (IV)
value 202 and a third address (ADDR2) 201C, and the result-
ing encrypted counter value 255C is provided to XOR logic
block 206 along with a third encrypted data block (CIPHER
TEXT2) 202C to generate a third decrypted data block
(PLAINTEXT2) 112C. Decryption operations continue with
respect to additional data blocks until an Nth data block is
reached. For the Nth decryption operation (again where N=n+
1), the encryption engine 254 uses the same secret key 108 to
encryptan Nth counter value (CTRn) 106D that is based upon
the initialization vector (IV) value 202 and an Nth address
(ADDRn) 201D, and the resulting encrypted counter value
255D is provided to XOR logic block 256 along with an Nth
encrypted data block (CIPHER TEXTn) 202D to generate an
Nth decrypted data block (PLAIN TEXTn) 112D. The N
decrypted data blocks (PLAIN TEXT0-n) 112A-D are com-
bined to form the decrypted software image 260.

It is again noted that XOR logic block 256 provides a
modulo-2 addition function that operates such that if two
input bits have the same logic level (e.g., 00 or 11), alogic “0”
is output, and iftwo input bits have different logic levels (e.g.,
01 or 10), a logic “1” is output. As above, the data blocks,
secret keys, and encryption operations can use 128-bit bit
lengths and operations, and the counter values (CTR0-n) can
also be 128-bit values. In one example implementation, each
of'the counter values (CTR0-n) 106 A-D can be implemented
as 128-bit values that are formed as follows: (1) the most
significant 64 bits include the initialization vector value (IV)
202, (2) the next 32 bits include an XOR of the upper 32 bits
of the initialization vector value (IV) 202 with the lower 32
bits of the initialization vector value (IV) 202, and (3) the least
significant 32 bits include the 32-bit system byte address
provided by address (ADDRO0-n) values 201 A-D. As further
indicated above, a start address (SRT) and end address (END)
for the address (ADDRO-n) values 201A-D, the secret key
(K) 108, and the counter initialization value (IV) 202 can be
stored in a separate secured data block, such as an encrypted
key blob, that is also stored in external memory 130 and
communicated to the processing system integrated circuit
140 for decryption and use within the processing system
integrated circuit 140. Additional and/or different techniques
could also be used to provide these data values to the process-
ing system integrated circuit 140.

As described above, the counter values 106A-D that are
used to generate the encrypted counter values 255A-D
include addresses (ADDRO-n) 201A-D associated with the
encrypted software image 134 stored in external memory
130. Assuming that the N data blocks are 128 bits (e.g., 16
bytes with 8 bits per byte). These addresses (ADDRO0-n)
201A-D can be generated, for example, as 32-bit 0-modulo-
16 byte system addresses. Other techniques could also be
used to generate the address values as well.

One significant advantage provided by the disclosed
embodiments is that the encrypted counter values 255A-D
can be generated at least in part while the encrypted code 132
is being obtained from the external memory 130 and before
these encrypted counter values 255A-D are needed to be used
within the decryption system 102. Thus, because the
encrypted counter values 255A-D are not dependent on the
data or cipher text within the encrypted image 134, the
encrypted counter values 255A-D can be pre-generated in
response to a system bus access request such that the decryp-
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tion system 102 only needs to perform the exclusive-OR
(XOR) logic operation after each of the encrypted data blocks
110A-Dhas been fetched from the external memory 130. This
ability to pre-generate the encrypted counter values 255A-D
allows for zero cycles of incremental latency to be added to
the system latency thereby improving system performance
while still providing significant protection for the encrypted
code 132 communicated from the external memory 130 to the
processing system integrated circuit 140.

FIG. 3 is a diagram of an example embodiment 300 for
encrypted information 310 that can be stored within the exter-
nal memory 130 that includes one or more encrypted software
images 134A-D. For the example embodiment 300, four
encrypted software images 134 A, 134B, 134C, and 134D are
stored as part of the encrypted information 310. In addition,
four encrypted key blobs 302A, 302B, 302C, and 302D are
also stored as part of the encrypted information 310, and each
one of the encrypted key blobs 302A-D is associated with one
of the encrypted images 134A-D. The encrypted software
images 134A-D can be generated as described above with
respect to FIG. 2A. The encrypted key blobs 302A-D can be
encrypted using an encryption algorithm, such as an AES
wrap algorithm based upon the AES Key Wrap/Unwrap
Algorithm standard as set forth by the Internet Engineering
Task Force (IETF) in the RFC 3394 standard. The encrypted
key blobs can also be received by the processing system
integrated circuit 140 and can be decrypted, for example,
using an AES unwrap algorithm based upon the AES Key
Wrap/Unwrap Algorithm standard as set forth by the Internet
Engineering Task Force (IETF) in the RFC 3394 standard. As
described above, the encrypted key blobs 302A-D can be used
to communicate the secret key 108, the initialization vector
(IV) value 202, start/end addresses for the software images,
and/or other desired information to the processing system
integrated circuit 140. It is again noted that the encrypted
information 310 stored within the external memory 130 can
be accessed by the memory controller 120 using one or more
memory addresses and/or using other desired techniques.

FIG. 4 is adiagram of an example embodiment for contents
of a key blob 302. Column 402 represents a label for the
contents of the various rows within the key blob 302; column
404 represents the address offset in hexadecimal for the start
of each of the rows within the key blob 302; and column 406
represents the contents for each row of the key blob 302. For
the example embodiment depicted, each row is configured as
32 bits of data from bit 31 (most significant) to bit 31 (least
significant), and a 128-bit key is being used for encryption of
a software image associated with the key blob 302. Looking
to the particular rows within the example key blob 302, the
first four rows are used to store the secret key 108, such as a
128-bit AES key; the following two rows are used to store the
initialization vector (IV) value 202 for the counter value
generation; and the following two rows are used to store the
start (SRT) and end (END) system addresses associated with
the encrypted software image 134 that is stored within the
external memory 130. It is further noted that additional and/or
different information can also be stored within the key blob
302.

In particular, row 412 (AES_KeyW0) is used to store bits
96-127 of the AES key (Key[127:96]); row 414 (AES_
KeyW1) is used to store bits 64-95 of the AES key (Key[95:
641]); row 416 (AES_KeyW2) is used to store bits 32-63 of the
AES key (Key[63:32]); and row 418 (AES_KeyW3) is used
to store bits 0-31 of the AES key (Key[31:0]). Row 420
(AES_CtrW0) is used to store bits 96-127 of the [V value 202
(IV-Counter [127:96]), and row 422 (AES_CrtW1) is used to
store bits 64-95 of the IV value 202 (IV-Counter [95:64]).

10

15

20

25

30

35

40

45

50

55

60

65

8

Row 424 (AES_RGDO) is used to store the start address
(SrtSysAddr[31:5]) for the encrypted software image, and
row 426 (AES_RGD1) is used to store the end address (End-
SysAddr[31:5]) for the encrypted software image. Itis further
noted that the least significant 5 bits (4:0) for each of row 424
and 426 can include fixed values. For example, bits 0 to 4 of
row 424 can be set to “0;” bits 1 to 4 for row 426 can be set to
“1,” and bit 0 of row 426 can hold a valid (V) bit. Row 432
(CRC32) is used to store an error check value for the data
within the key blob 302, such as a 32-bit CRC (cyclic redun-
dancy check) value stored as bits 0-31 (KeyBlobCRC) within
row 432. Further, additional rows, such as rows 428 and 430,
can be reserved for future use (RFU). Other variations could
also be implemented.

FIG. 5 is a block diagram of an example embodiment for
counter-mode decryption system 102 that includes a decryp-
tion engine 104. As indicated above, the decryption engine
104 receives a secret key 108, a counter value 106, and
encrypted code 110 and operates to generate decrypted code
112. The decryption engine 104 includes an encryption
engine 254, such as a 128-bit AES encryption system, and
XOR logic block 256 that performs an XOR logic operation
on the encrypted counter value 255 and the encrypted code
110. It is noted that the example embodiment of FIG. 5
provides registers 506 A-D for four different secret keys, reg-
isters 510A-D for four different counter value portions, and
registers 512A-D for four different start(srt)/end system
addresses that can be associated with up to four different
software images 134A-D. It is further noted that different
numbers of registers can also be provided, if desired.

Looking in more detail to the upper portion 502 of the
example embodiment for decryption system 102, the
encrypted code (CIPHER TEXT) 110 is received and stored
in register 504 in 64-bit blocks of data. A multi-dimensional
parity checker (MDPC) block 505 can be used, if desired, to
process, check, and possibly correct the incoming encrypted
code 110. A multiplexer (MUX) 508 chooses between the
output of the MDPC block 505 and the output of register 504.
The output of MUX 508 is provided to the XOR logic block
256 within the lower portion 550 of the example embodiment
for decryption system 102. Four registers 506 A, 5068, 506C,
and 506D are used to store up to four secretkeys relating to up
to four different encrypted software images. Four registers
510A, 510B, 510C, and 510D are used to store the first 96-bit
portion (PCTR) of the counter values related to these
encrypted software images. Four registers 512A, 512B, 512C
and 512D are used to store start and end addresses for these
encrypted software images. The MUX 520 is used to select
between the outputs of the registers 506A-D to provide the
secret key 108 to the encryption engine 254. The MUX 522 is
used to choose between the outputs of the registers 510A-D to
provide the first 96-bit portion (PCTR) of the counter value to
MUX 524. The last 32 bits of the 128-bit counter value (CTR)
106 that is output to the encryption engine 254 are provided
from the system address (SYSADDR) 514 that is stored in
register 515. This stored system address from register 515 is
also compared to the start/end (SRT/END) addresses within
registers 512A-D using address comparators 516A, 5168,
516C, and 516D to determine if an address hit (HIT) has
occurred. The resulting address HIT control signal is then
used to control the output selection provided by MUX 520
and MUX 522.

The encryption engine 254 receives the counter value
(CTR) 106 and the secretkey 108. The encryption engine 254
then uses the secret key 108 to encrypt the counter value
(CTR) 106 and outputs the encrypted counter value 255. For
the example embodiment depicted, AES encryption is pro-
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vided using an initialization round (RNDO) followed by ten
additional processing rounds (RND1-10) conducted in four
different processing clock cycles 532, 534, 536, and 538. The
resulting encrypted counter value 255 is then output to the
lower portion 550 of the example embodiment for the decryp-
tion system 102. It is noted that each AES round can include
one or more of four different transformations including: byte
substitution, state array row shift, state array column mix, and
round key addition. Different and/or additional processing
could also be provided, and variations could be implemented,
as desired.

Looking in more detail to the lower portion 550 of the
example embodiment for decryption system 102, the
encrypted counter value 255 is received by MUX 552 and
then stored in register 556. An additional MUX 554 then
receives the stored encrypted counter value from register 556
and stores it within one of the encrypted counter (CTR) reg-
isters 558 and 560. For the example embodiment depicted, it
is assumed that four (4) 64-bit data blocks are being accessed
at a time from the external memory 130. As such, two 128-bit
encrypted counter values are being generated and stored at
any given time within the two encrypted counter (CTR) reg-
isters 558 and 560. MUX 562 is used to select one of the four
64-bit data values stored in registers 558/560 to output to
XOR logic block 256. The XOR logic block 256 performs an
XOR logic operation using as inputs one of the 64-bits asso-
ciated with the encrypted counter 255 and the 64-bits associ-
ated with the encrypted code 110 from register 504. The
resulting 64-bit decrypted output is used to provide the
decrypted code 112 output by the decryption system 102. As
such, for each 4x64 bit access from the external memory 130,
two 128-bit decrypted plain text values (PLAINTEXT) are
output as the decrypted code 112 by the decryption system
102.

It is noted that a direct output path is provided from XOR
logic block 256 that can be connected, for example, to the
memory buffer system 122 in FIG. 1, and an additional path
through MUX 578 is also provided that can be connected, for
example, to the system interconnect bus 126 in FIG. 1. Fur-
ther, three 64-bit output values from XOR logic block 256 can
be stored in registers 564, 566, and 568. A MUX 576 can then
be used to select outputs from these registers 564/566/568 to
provide to MUX 578 for output to the system interconnect bus
126. These additional registers 564, 566, and 568 can be used,
for example, where internal accesses can wrap around
address boundaries. In addition, a MUX 572 and an error
correction block (CRC32) 574 can also be provided where
error detection, such as 32-bit cyclic redundancy check
(CRC) detection, is desired to be performed on the decrypted
code values from the XOR logic block 256. Still further,
connection paths can be provided from MUX 562 to registers
within the upper portion 502 for the decryption system 102 to
allow loading of these registers with key, counter, and address
values. Paths from register 504 and MUX 508 are also pro-
vided to MUX 552 and MUX 554 to facilitate the loading of
these values during initialization of the processing system
integrated circuit 140.

In operation, the decryption system 102 provides a unique
counter value (CTR) 106 for every 128-bit data block as the
system address (SYSADDR) 514 is included in the last 32
bits of the counter value (CTR) value 106. These different
unique counter values (CTR) 106 are also generated during
encryption of the original software image. As such, every
128-bit data block of plain text produces different cipher text
outputs, and detectable patterns in the input communications
between the external memory 130 and the processing system
integrated circuit 140 are avoided, thereby improving code
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and data security protection. In addition, zero cycles of addi-
tional latency are added by the decryption system 102 as the
encrypted counter (CTR) values 255 are generated prior to
these values being needed by the XOR logic block 256. As
such, the incremental delay to perform the decryption within
decryption system 102 is limited to the relatively insignificant
combinational gate delays associated with a final XOR logic
operation within XOR logic block 256, and these gate delays
are considerably less than a single machine cycle time.

It is further noted that prior solutions implement counter-
mode decryption in solutions that both write data to external
memory and read data from external memory. However,
when writing more than once to external memory using the
same address and the same cryptographic key, the counter-
mode decryption cannot be used securely. In contrast, the
disclosed embodiments overcome these limitations with prior
counter-mode decryption solutions by encrypting a range of
addresses with a particular cryptographic key only once and
then performing decryption of encrypted code from that
encrypted memory address range multiple times. As such, the
disclosed embodiments can securely fetch and decrypt
encrypted code data blocks from encrypted software image(s)
134 stored in external memory 130.

FIG. 6 is a process flow diagram of an example embodi-
ment 600 for counter-mode decryption of an encrypted soft-
ware image within a processing system integrated circuit. In
block 602, a system address is received for the encrypted code
block being accessed. In block 604, an encrypted counter
value is generated using the system address and a secret key.
In block 606, the encrypted code block is fetched from the
external memory. In block 608, an XOR logic function is
performed on the encrypted counter value and the encrypted
code block to generate a decrypted code block. In block 610,
the decrypted code block is output, for example, to a system
interconnect bus 126 for further processing within the inte-
grated circuit. As shown in FIG. 6, the encrypted counter
value is generated in block 604 while the encrypted code
block is being fetched from external memory in block 606 so
that no additional cycles of latency is added to the overall
system, thereby providing secure code protection while
avoiding degradation of system performance.

It is also noted that although the embodiments described
herein used counter-mode decryption, other data independent
encryption/decryption techniques could also be utilized. The
counter-mode encryption/decryption described herein can be
considered a block cipher mode of encryption/decryption
operation. The use of the unique counter values provides at
least two distinct advantages when performing decryption
operations versus alternative decryption techniques: (1) the
majority of the cryptographic calculations are independent of
the input cipher text which is used only in the final XOR
function, and (2) random access is supported such that the
decryption of any given encrypted code data block is not
dependent upon the previous encrypted code data blocks that
have been decrypted. If this random access is not important
for a given application, then other block cipher modes of
operation that rely upon previous decryptions can also be
used to provide zero-cycle additional incremental latency
performance as described herein. For example, if the
encrypted code is accessed sequentially as blockl, block2,
block(n), then an output feedback (OFB) mode for encryp-
tion/decryption can be utilized to provide zero-cycle addi-
tional latency.

For this OFB mode of operation, the decryption algorithm
is similar to the embodiments described above for the counter
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(CTR) mode of operation, except that the generation of the
input counter values rely upon previous counter values and
can be specified as follows:

CTRO=E(KEY, IV)

CTR1=E(KEY, CTR0)

CTR2=E(KEY, CTR1)...

CTRn=E(KEY, CTRn-1)

As such, for this generation of counter values, the first counter
value (CTRO) is based upon encryption (E) by encryption
engine 254 of the key 108 and the initialization vector (IV)
202. The second counter value (CTR1) is based upon encryp-
tion (E) by encryption engine 254 of the key 108 and the
previous counter value (CTRO). The third counter value
(CTR2) is based upon encryption (E) by encryption engine
254 of the key 108 and the previous counter value (CTR1).
This continues with the Nth (where N=n+1) counter value
(CTRn) being based upon encryption (E) by encryption
engine 254 of the key 108 and the previous counter value
(CTRn-1). Thus, the OFB mode of encryption/decryption
can also be utilized in certain environments, and the encryp-
tion/decryption is still data independent except for a final
XOR function.

As described herein, a variety of embodiments can be
implemented and different features and variations can be
implemented, as desired.

For one embodiment, a method is disclosed for decryption
within an integrated circuit including obtaining encrypted
code associated with an encrypted software image from an
external memory that is external to an integrated circuit where
the encrypted code being associated with an address, gener-
ating an encrypted counter value within the integrated circuit
using the address at least in part while the encrypted code is
being obtained, and decrypting the encrypted code using the
encrypted counter value to generate decrypted code associ-
ated with the encrypted software image. In further embodi-
ments, the generating of the encrypted counter value is com-
pleted before the obtaining of the encrypted code has
completed.

In additional embodiments, the method includes combin-
ing an initialization vector value with the address to form a
counter value and encrypting the counter value with a secret
key to generate the encrypted counter value. In further
embodiments, the method also includes receiving the initial-
ization vector value and the secret key from the external
memory. In other embodiments, the method also includes
receiving a plurality of initialization vector values and a plu-
rality of secret keys for a plurality of encrypted software
images stored within the external memory. In still further
embodiments, the method includes receiving start and end
addresses for the plurality of encrypted software images and
using the start and end addresses to select one of the initial-
ization vector values and one of the secret keys for generating
the encrypted counter value.

In further embodiments, the decrypting includes perform-
ing an exclusive-OR logic operation on the encrypted code
and the encrypted counter value. In additional embodiments,
the method can include repeating the obtaining, generating,
and decrypting for a plurality of addresses for encrypted code
within the encrypted software image. In other embodiments,
the method includes storing the encrypted code and the
decrypted code within a memory buffer system within the
integrated circuit. In still further embodiments, the encrypted
code and the encrypted counter value can include AES (Ad-
vanced Encryption Standard) encryption.

For another embodiment, a system is disclosed for decryp-
tion within an integrated circuit including a memory control-
ler and a decryption system within an integrated circuit. The
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memory controller is configured to use an address to obtain
encrypted code from an external memory where the
encrypted code is associated with an encrypted software
image stored within the external memory. The decryption
system is configured to generate an encrypted counter value
using the address at least in part while the encrypted code is
being obtained, and the decryption system is further config-
ured to decrypt the encrypted code using the encrypted
counter value to generate decrypted code associated with the
encrypted software image. In further embodiments, the
decryption system is configured to complete generation of the
encrypted counter value before the memory controller has
obtained the encrypted code.

In additional embodiments, the decryption system is fur-
ther configured to encrypt a counter value with a secret key to
generate the encrypted counter value where the counter value
includes an initialization vector value combined with the
address. In further embodiments, the memory controller is
further configured to obtain the initialization vector value and
the secret key from the external memory. In other embodi-
ments, the decryption system is configured to obtain a plural-
ity of initialization vector values and a plurality of secret keys
for a plurality of encrypted software images from the external
memory. In still further embodiments, the decryption system
is further configured to store start and end addresses for the
plurality of encrypted software images and to use the start and
end addresses to select one of the initialization vector values
and one of the secret keys for the encrypted counter value.

In further embodiments, the decryption system also
includes an exclusive-OR logic block having the encrypted
code and the encrypted counter value as inputs and having
decrypted code as an output. In additional embodiments, the
decryption system is configured to generate a plurality of
additional encrypted counter values where each additional
encrypted counter value is dependent upon a previous
encrypted counter value. In other embodiments, the system
includes a memory buffer system, and the encrypted code and
the decrypted code are stored within the memory buffer sys-
tem. In still further embodiments, the encrypted code and the
encrypted counter value can include AES (Advanced Encryp-
tion Standard) encryption.

It is noted that the functional blocks, devices, and/or cir-
cuitry described herein can be implemented using hardware,
software, or a combination of hardware and software. In
addition, one or more processing devices executing software
and/or firmware instructions can be used to implement the
disclosed embodiments. It is further understood that one or
more of the operations, tasks, functions, or methodologies
described herein can be implemented, for example, as soft-
ware, firmware and/or other program instructions that are
embodied in one or more non-transitory tangible computer
readable mediums (e.g., data storage devices, flash memory,
random access memory, read only memory, programmable
memory devices, reprogrammable storage devices, hard
drives, floppy disks, DVDs, CD-ROMs, and/or any other
tangible storage medium) and that are executed by one or
more central processing units (CPUs), controllers, microcon-
trollers, microprocessors, hardware accelerators, processors,
and/or other processing devices to perform the operations and
functions described herein.

Unless stated otherwise, terms such as “first” and “second”
are used to arbitrarily distinguish between the elements such
terms describe. Thus, these terms are not necessarily intended
to indicate temporal or other prioritization of such elements.

Further modifications and alternative embodiments of the
described systems and methods will be apparent to those
skilled in the art in view of this description. It will be recog-
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nized, therefore, that the described systems and methods are
not limited by these example arrangements. It is to be under-
stood that the forms ofthe systems and methods herein shown
and described are to be taken as example embodiments. Vari-
ous changes may be made in the implementations. Thus,
although the invention is described herein with reference to
specific embodiments, various modifications and changes
can be made without departing from the scope of the present
invention. Accordingly, the specification and figures are to be
regarded in an illustrative rather than a restrictive sense, and
such modifications are intended to be included within the
scope of the present invention. Further, any benefits, advan-
tages, or solutions to problems that are described herein with
regard to specific embodiments are not intended to be con-
strued as a critical, required, or essential feature or element of
any or all the claims.

What is claimed is:

1. A method for an integrated circuit, comprising:

communicating between the integrated circuit and an

external memory to obtain encrypted code associated
with an encrypted software image stored in the external
memory, the encrypted code being associated with an
address;

generating an encrypted counter value within the inte-

grated circuit by encrypting a counter value at least in
part while the encrypted code is being obtained, the
counter value being based upon the address;

after the encrypted code is obtained and after the encrypted

counter value is generated, decrypting the encrypted
code within the integrated circuit using the encrypted
counter value to generate decrypted code associated
with the encrypted software image; and
communicating the decrypted code through a system bus
interconnect for execution within the integrated circuit.

2. The method of claim 1, wherein the generating of the
encrypted counter value is completed before the obtaining of
the encrypted code has completed.

3. The method of claim 1, wherein the generating com-
prises combining an initialization vector value with the
address to form the counter value and encrypting the counter
value with a secret key to generate the encrypted counter
value.

4. The method of claim 3, further comprising receiving the
initialization vector value and the secret key from the external
memory.

5. The method of claim 3, further comprising receiving a
plurality of initialization vector values and a plurality of
secretkeys for a plurality of encrypted software images stored
within the external memory.

6. The method of claim 5, further comprising receiving
start and end addresses for the plurality of encrypted software
images, and using the start and end addresses to select one of
the initialization vector values and one of the secret keys for
generating the encrypted counter value.

7. The method of claim 1, wherein the decrypting com-
prises performing an exclusive-OR logic operation on the
encrypted code and the encrypted counter value.

8. The method of claim 1, further comprising repeating the
communicating, generating, decrypting, and communicating
for a plurality of addresses for encrypted code within the
encrypted software image.

9. The method of claim 1, further comprising storing the
encrypted code and the decrypted code within a memory
buffer system within the integrated circuit.
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10. The method of claim 1, wherein the encrypted code and
the encrypted counter value comprise AES (Advanced
Encryption Standard) encryption.

11. A system within an integrated circuit, comprising:

a memory controller within the integrated circuit coupled
to a system bus interconnect and configured to use an
address to obtain encrypted code from an external
memory, the encrypted code being associated with an
encrypted software image stored within the external
memory; and

a decryption system within the integrated circuit coupled to
the system bus interconnect and configured to encrypt
the counter value to generate an encrypted counter value
at least in part while the encrypted code is being
obtained, the counter value being based upon the
address, and the decryption system being further config-
ured, after the encrypted code is obtained and after the
encrypted counter value is generated, to decrypt the
encrypted code using the encrypted counter value to
generate decrypted code associated with the encrypted
software image;

wherein the decryption system is further configured to
output the decrypted code for communication through
the system bus interconnect for execution within the
integrated circuit.

12. The system of claim 11, wherein the decryption system
is configured to complete generation of the encrypted counter
value before the memory controller has obtained the
encrypted code.

13. The system of claim 11, wherein the decryption system
is further configured to encrypt the counter value with a secret
key to generate the encrypted counter value, the counter value
comprising an initialization vector value combined with the
address.

14. The system of claim 13, wherein the memory controller
is further configured to obtain the initialization vector value
and the secret key from the external memory.

15. The system of claim 13, wherein the decryption system
is configured to obtain a plurality of initialization vector
values and a plurality of secret keys for a plurality of
encrypted software images from the external memory.

16. The system of claim 15, wherein the decryption system
is further configured to store start and end addresses for the
plurality of encrypted software images and to use the start and
end addresses to select one of the initialization vector values
and one of the secret keys for the encrypted counter value.

17. The system of claim 11, wherein the decryption system
further comprises an exclusive-OR logic block having the
encrypted code and the encrypted counter value as inputs and
having decrypted code as an output.

18. The system of claim 11, wherein the decryption system
is configured to generate a plurality of additional encrypted
counter values, each additional encrypted counter value being
dependent upon a previous encrypted counter value.

19. The system of claim 11, further comprising a memory
buffer system, and wherein the encrypted code and the
decrypted code are stored within the memory buffer system.

20. The system of claim 11, wherein the encrypted code
and the encrypted counter value comprise AES (Advanced
Encryption Standard) encryption.
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